
Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

1

Manonmaniam Sundaranar University,

Directorate of Distance & Continuing Education,

Tirunelveli- 627 012, Tamil Nadu, India

OPEN AND DISTANCE LEARNING (ODL) PROGRAMMES

(FOR THOSE WHO JOINED THE PROGRAMMES FROM THE

ACADEMIC YEAR 2023–2024)

M. Sc. Physics

Course Material

Practical III

SPHP31

Prepared By

Dr. S. Shailajha

Dr. B. Bagyalakshmi

Assistant Professor

Department of Physics

Manonmaniam Sundaranar University

Tirunelveli – 12

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

2

 PRACTICAL – III

SPHP31

Advanced Physics Experiments – I and Microprocessor 8085 & Microcontroller 8051

Programming

Section – A (any 6 experiment)

Experiment
No.

Name of the Experiment Page
No.

1. Cauchy’s Constant of a prism using a spectrometer 4

2 Design and Simulation of an Astable Multivibrator Using a 555
Timer for a Given Frequency

8

3 Simulation of Zener Diode Characteristics and Voltage Regulator
in PSpice

11

4 Characteristics Of Solar Cell 14

5 Determination Of Magnetoresistance Of Semiconductors 18

6 Determination of Dielectric Constant of a Liquid

21

7 Characteristics of Phototransistor 24

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

3

Section B : Microprocessor 8085 and Microcontroller 8051 Programming
(Any 6 Experiments)

Experiment
No.

Name of the Experiment Page
No.

8085 Microprocessor Programs
1 Arithmetic Operations

a) Addition of two 8 bit and two 16 bit numbers
b) Subtraction of two 8 bit and 16 bit numbers
c) Multiplication of two 8 bit numbers –16-bit numbers.

26

2 Data Manipulation
a) Arrange the given data items in Ascending order
b) Finding the Minimum value in the given data set.
c) Search of a given number in the given data set.

37

3 System Call and Rolling Character
a) Calculation of time delay for a given interval.
b) Roll a given character from Left to Right / Right to Left on the
7 segment displays with the specified time interval.

46

8051 Microcontroller Programs
4 Data Transfer And Exchange

a) Write an assembly language program to transfer N bytes of
data from location A: XX H to location B: YYH in the internal
RAM
b)Write an assembly language program to exchange N bytes of
data at location A:XX H and at location B:YY H.

51

5 Data Manipulation
a) Write an assembly language program to find the largest element
in a given array of N =___ H bytes at location 4000H. Store the
largest element at location 4062H.
b) Write an assembly language program to count number of ones
and zeros in an eight bit number.

55

6 Arithmetic Programming
a) Write an assembly language program to perform the addition of
two 16-bit numbers.
b) Write an assembly language program to perform the subtraction
of two 16-bit numbers.
c) Write an assembly language program to perform the
multiplication of two 8-bit numbers.
d) Write an assembly language program to find the square of a
given number N.

60

7 Code Conversion
a) Write an assembly language program to convert a BCD
number into ASCII.
b) Write an assembly language program to convert a ASCII
number into Decimal.
c) Write an assembly language program to convert a decimal
number into ASCII.
d) Write an assembly language program to convert a binary (hex)
number into decimal.
e) BCD to 7 Segment Code

65

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

4

1. Cauchy’s Constants Of A Prism Using A Spectrometer

Aim:

To determine the Cauchy’s constants (A and) for the given prism material by studying the
variation of refractive index (n) with wavelength (λ) and fitting a straight line using
experimental data.

Apparatus and Software Requirement:
Spectrometer, Prism, Mercury lamp, Spirit level, Origin or Excel

Formula:
1. The refractive index (µ) of the material of the prism is given by:

2
sin

2
sin

A

A m

 Where:

 A = Angle of the prism

 δm = Angle of minimum deviation

2. Variation of refractive index with wavelength is represented by Cauchy’s relation:

2
 B

A

 Where:

 A and B are Cauchy’s constants

 λ = Wavelength of light in m

 Cauchy’s constants are calculated as:

 2

22

11
mB

gb

gb

2
b

b

B
A

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

5

Diagram

Model Graph

Procedure:

 Step 1: Calibration of Spectrometer

Adjust the spectrometer to focus the crosshairs of the telescope.

Calibrate it using a known wavelength (e.g., sodium D-line at 589 nm).

 Step 2: Prism Setup

Place the prism on the prism table with one face towards the collimated light beam.

Adjust the prism and spectrometer to achieve the minimum deviation position for each
wavelength.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

6

 Step 3: Measure Angle of Minimum Deviation (δm)

Rotate the telescope to observe the refracted ray.

Adjust the position of the prism and the telescope to find the angle of minimum
deviation for each wavelength.

 Step 4: Calculate Refractive Index (μ)

The refractive index (μ) of the prism material is calculated using: µ = sin ((A + δm)/2)
/ sin(A/2). where A is the angle of the prism.

 Step 5: Tabulate Observations

Record the refractive index (μ) for each wavelength (λ). µb & µg are refractive index of
blue and green colour respectively. Use the formula to find A and B.

 Step 6: Fit Data Using Software

Use any curve-fitting software (origin, MATLAB, Excel, Python, etc.) to fit the data to
Cauchy’s equation.

Plot μ vs. 1/λ2. Determine the slope (B) and intercept (A) from the linear fit.

For Graph plotting

 In software like Origin, you can fit the experimental data (μ vs. λ) to this equation.
 Convert λ to λ2 for simplicity, and perform a linear fit if rearranging to:
 μ=A + Bx, where x = 1/λ2
 Plot μ on the y-axis and 1/λ2 on the x-axis.
 Use a linear fitting tool in Origin to calculate A (intercept) and B (slope).

Observations:
1. Least Count Calculation:

 Main Scale Division (x) = ______ Degree

 Total Vernier Scale Divisions (n) = ______

 Least Count = x/n = ______ Degree

2. Angle of Prism (A) Measurements:

Vernier Telescope Readings for Reflection from Difference
2A = b-a
(Degree)

Angle of
the

Prism
(A)

Mean
(A)

First face (a)
Degree

Second face (b)
Degree

MSR VSC TR MSR VSC TR

V1

V2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

7

3. Table for the Angle of Minimum Deviation (δm):

Colour

Vernier

Telescope Readings for

Difference
δm = b-a
(Degree)

Mean
δm

(Degree)

Refracted Ray Direct Ray

MSR VSC TR MSR VSC TR

Blue

V1

V2

Green

V1

V2

Calculation

Refractive index for each color is calculated using:

 µ = sin((A + δm)/2) / sin(A/2)

Cauchy’s constants are calculated using:

22

11

gb

gbB

2
b

b

B
A

Result:
1. The refractive indices of the prism for various colours are:

2. The Cauchy’s constants are:

 From calculation A = ______ From graph A = ______

 B = ______ m2 B = ______ m2

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

8

2. Design and Simulation of an Astable Multivibrator Using a 555 Timer for a Given
Frequency

Aim

To design and simulate an Astable Multivibrator circuit using a 555 Timer in PSpice for
generating a square wave with a specified frequency and duty cycle.

Apparatus and Software required:

1. PSpice Software
2. 555 Timer IC Model
3. Resistors and Capacitors (virtual components in PSpice)
4. Oscilloscope (virtual)

Circuit Diagram:

Theory:

The 555 timer is a widely used IC for generating clock pulses, delays, and oscillations.
In the Astable Mode, the circuit oscillates continuously between HIGH and LOW states,
producing a square wave. The output frequency (f) and duty cycle (D) depend on the resistor
and capacitor values:

1. Frequency (f):

 CRR
f

21 2

44.1

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

9

2. Duty Cycle (D):

 100

2 21

21

RR

RR
D

Design Steps:

1. Specification:
o Desired Frequency (f): User-defined (e.g., 1 kHz)
o Duty Cycle (D): Optional (e.g., 50%)

2. Calculate Components: Using the frequency formula:

 21 2

44.1

RRf
C

Select standard values for R1, R2, and calculate C.

Simulation Steps in PSpice:

1. Start a New Project:
o Open PSpice.
o Create a new project and choose "Analog or Mixed A/D."

2. Place Components:
o Add a 555 Timer IC.
o Place R1, R2, and CC according to the circuit diagram.
o Add a DC power source (VCC) and ground.

3. Connect the Circuit:
o Wire all components as per the design.

4. Add Probes:
o Place voltage probes at the output pin (pin 3 of the 555 timer).

5. Set Simulation Parameters:
o Choose a transient analysis.
o Set the total simulation time (e.g., 10 ms for a 1 kHz frequency).

6. Run Simulation:

Start the simulation and observe the output waveform on the oscilloscope

Observations:

1. Record the output waveform.
2. Measure the frequency and compare it with the calculated value.
3. Verify the duty cycle.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

10

Result:

The Astable Multivibrator was successfully simulated in PSpice. The output waveform,
frequency, and duty cycle were observed and matched the theoretical calculations.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

11

3. Simulation of Zener Diode Characteristics and Voltage Regulator in PSpice

Aim

1. To simulate and study the V-I characteristics of a Zener diode in PSpice.
2. To design and simulate a voltage regulator circuit using a Zener diode.

Apparatus and Software required:

1. PSpice Software
2. Zener Diode Model
3. Resistors (virtual)
4. DC Voltage Source (virtual)

1: Zener Diode Characteristics

Circuit Diagram:

The circuit consists of:

 Zener diode
 Variable DC voltage source
 Series resistor (for current limiting)

Simulation Steps:

1. Start a New Project:
o Open PSpice and create a new project.

2. Place Components:
o Add a Zener diode (e.g., 1N4733 or as per your specification).
o Add a DC voltage source.
o Place a resistor in series with the Zener diode.

3. Connect the Circuit:

Fig. 1: Zener diode : I – V characteristics

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

12

o Wire the components as per the circuit diagram for both forward and reverse
bias.

4. Set Simulation Parameters:
o Use DC Sweep Analysis:

 Sweep voltage source from 0 to a value above VZ (e.g., 0–10 V).
 Set the increment step (e.g., 0.1 V).

5. Run Simulation:
o Observe the current (ID) through the diode and voltage (VD) across it.

Observations:

 Plot VD vs. ID to obtain the Zener diode characteristics.
 Note the Zener breakdown voltage (VZ) in reverse bias.

Result:

The Zener diode V-I characteristics were successfully simulated, and the Zener breakdown
voltage was verified.

2: Zener Diode Voltage Regulator

Circuit Diagram:

The circuit consists of:

 Zener diode
 Resistor (Rs) for current limiting
 Load resistor (RL)
 DC voltage source (Vin)

Design Steps:

1. Specification:

o Input Voltage (Vin): e.g., 10 V
o Desired Output Voltage (Vout): Zener Voltage (VZ), e.g., 5.1 V
o Load Current (IL): e.g., 20 mA

2. Calculate Resistor Values:

 Series Resistor (Rs)

ZL

Zin
s II

VV
R

Where Iz is the Zener current, chosen to keep the diode in breakdown region

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

13

Circuit Diagram

Simulation Steps:

1. Start a New Project:
o Open PSpice and create a new project.

2. Place Components:
o Add a Zener diode, resistor (R2), load resistor (R1), and DC voltage source

(Vin).
3. Connect the Circuit:

o Wire the components as per the voltage regulator circuit diagram.
4. Set Simulation Parameters:

o Use DC Sweep Analysis:
 Sweep Vin from a value below VZ to a higher value (e.g., 0–15 V).

5. Run Simulation:
o Observe the output voltage (Vout) across the load resistor (RL).

Expected Results

Constant Output Voltage: The output voltage across the Zener diode remains steady near the
breakdown voltage (e.g., 5.1V).

Effect of Load: Verify if the Zener can maintain regulation when the load resistance decrease

Result:

The Zener diode voltage regulator was successfully simulated, and a constant output voltage
was observed across the load.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

14

4. Characteristics Of Solar Cell

Aim

To study I-V Characteristics, Load Response, and Spectral Response of Photovoltaic

Solar Cell

Apparatus required:

Solar cell measurement kit/

1. Photovoltaic solar cell (small PV panel)
2. Adjustable light source (e.g., halogen lamp or solar simulator)
3. Variable resistive load or rheostat
4. Multimeter (for voltage and current measurements)
5. Spectrometer or filters for spectral response analysis
6. Power supply (for light source, if needed)
7. Connecting wires and breadboard (if required)

Experimental Setup

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

15

Formula used:

Parameter Formula Explanation Observation

Short-Circuit
Current (IS)

Measured directly
(when V=0)

The maximum current
the solar cell can
produce when its
terminals are short-
circuited.

The current value
when the load
resistance is zero.

Open-Circuit
Voltage (VOC)

Measured directly
(when I=0)

The maximum voltage
the solar cell can
produce when there is
no current flow (open
circuit).

The voltage across the
solar cell with no
connected load.

Maximum Power
(PMPP)

PMPP=VMPP×IMPP

The product of
voltage and current at
the point where the
solar cell delivers
maximum power.

The power output is
maximum at a
specific combination
of VMPP and IMPP.

Fill Factor (FF)
SCOC

MPP

IV

P
FF

A measure of the
quality of the solar
cell, indicating how
close the I-V curve is
to a rectangle.

Higher FF indicates
better performance.

Efficiency (η) 100
InputPower

PMPP

The ratio of the solar
cell's maximum
power output to the
power input from the
light source.

Efficiency depends on
the cell type and
conditions.

Spectral Response
(Iλ)

Measured directly for
each wavelength

Indicates how
sensitive the solar cell
is to different
wavelengths of light.

Higher response for
specific wavelengths
corresponds to better
absorption by the
solar cell.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

16

Procedure: Part A: I-V Characteristics

1. Setup:
o Connect the solar cell to a variable resistor (load).
o Place the light source at a fixed distance from the solar cell.
o Use a multimeter to measure current (I) and voltage (V).

2. Measurements:
o Vary the load resistance from a very low value to a high value.
o For each resistance, record the current and voltage readings.

3. Plot:
o Plot the I-V curve with current (I) on the y-axis and voltage (V) on the x-axis.

Part B: Load Response

1. Setup:
o Use the same setup as Part A.

2. Measurements:
o Connect different resistive loads and measure the voltage across and current

through each load.
o Calculate the power P=V×I for each load.

3. Plot:
o Plot the power vs. load resistance to observe the load response.

Part C: Spectral Response

1. Setup:
o Use a spectrometer or place optical filters between the light source and solar

cell to isolate specific wavelengths.
2. Measurements:

o For each wavelength or filter, measure the current generated by the solar cell
under constant illumination intensity.

3. Plot:
o Plot the spectral response curve with current (I) or efficiency on the y-axis and

wavelength (λ) on the x-axis.

Observation

Part A: I-V characteristcs

Intensity =

Load Resistance (R) ohm Voltage (V) Current (I) mA Power (P=V×I) mW

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

17

Part B: Load Response

Load Resistance (R) Voltage (V) Current (I) Power (P=V×I) mW

Part C: Spectral Response

Wavelength (λ) Current (I) Voltage (V) Observations

Result:

1. The I-V characteristics show the solar cell's electrical behavior under varying loads.

2. The load response illustrates how the cell's output varies with different resistances.

3. The spectral response indicates the sensitivity of the solar cell to various wavelengths

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

18

5. DETERMINATION OF MAGNETORESISTANCE OF SEMICONDUCTORS

Aim

To study the magnetic field dependence of the transverse magnetoresistance of a

given semiconductor sample

Apparatus Required

Four Probe Set-up, Sample (n-type germanium), Magnetoresistance Set-up,

Electromagnet, Constant Power Supply, Digital Gauss meter.

Formula

∆𝑅

𝑅
=

𝑅 − 𝑅

𝑅

Where, R - Sample resistance without magnetic field (42.98 𝛀) and Rm - Resistance of the
sample with the magnetic field (𝛀)

Experimental Setup

Four probe arrangement

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

19

Procedure

i. Set the pole piece distance of the electromagnet to nearly 19 mm.

ii. ii. Now place the hall probe of gauss meter the magnetic field as shown in figure 1

and switch on the electromagnet power supply and set it to maximum (4A). Rotate

the Hall probe till it become perpendicular to magnetic field. Magnetic field will be

maximum in this adjustment.

iii. Now lower the current in constant power supply to minimum and slowly increase

the current and tabulate the magnetic field as in Table 1.

iv. Next unscrew the screws given at the top of probe to lower the case plate. Put the

sample on the base plate of the four probe arrangement. Slowly screw both screws

evenly to apply a very gentle pressure on the four spring probes. Check the

continuity between the probes for proper electrical contacts.

v. Connect the outer pair of probes (red/black) leads to the current terminals and the

inner pair (yellow and green lead) to the probe voltage terminals.

vi. Switch on the mains supply of magnetoresistance setup. Constant power supply and

put the digital panel meter in the current measuring mode through the selector

switch. In this position LED facing mA would glow. Adjust the current to a desired

value

vii. Now put the digital panel meter in voltage measuring mode. In this position LED

facing mV would glow and the meter would read the voltage between the probes.

viii. Now place the probe in the magnetic field as shown in figure 1. And switch on the

electromagnet power supply and set it to maximum. Further rotate the

magnetoresistance probe till it become perpendicular to magnetic field. Voltage will

be maximum in this adjustment.

ix. Vary the magnetic field by varying the current step by step and note the change in

voltage reading as in Table 1.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

20

Observation

Table 1: Data for Magnetoresistance of n-Ge Probe Current I= -------mA

S.

No.

Current

(mA)

Magnetic

Field (H) in

KG

Voltage

(Vm)

in mV

𝑹𝒎 =
𝑽𝒎

𝑰

in (Ω)

∆𝑹

𝑹

Log H Log
∆𝑹

 𝑹

Model Graph

Result:

The dependence of resistivity with external applied magnetic field was studied

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

21

6. Determination of Dielectric Constant of a Liquid

Aim

To determine the dielectric constant (k) of a liquid

Apparatus Required

Op-Amp IC-741, cylindrical capacitor, capacitors, resistors, Jar containing liquid, dual
power supply, signal generator, connecting wires, etc

Formula

Dielectric Constant
x

x

C

C
k

1

where Cx-Capacitance of unknown cylindrical capacitor with air as medium

C1
x-Capacitance of unknown cylindrical capacitor with liquid as medium

Circuit Diagram

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

22

Procedure:

1. Connect all circuit components as shown in circuit diagram using Cstd capacitor with A and
C points. (C AC =500 pF is used).

2. Turn on dual power supply with +15 V and -15V.

3. Turn on AFG. In this unit choose sine function. Set frequency 6.2 KHz, set input voltage,
Vrms =1 V.(Vp =1.425 V or VFF =2.85 V).

4. Measurement of Unknown Capacitance (Cx) in Air Medium

i. Calibration Using Standard Capacitors (Cstd):
a. Connect Cstd (CAC=500 pF) between points P and Q.
b. Record deflection (θ1) on the microammeter.
c. Repeat the process using CAD=333 pF, CAE=250 pF, CAF=200 pF, and

CAG=166 pF, recording θ1in each case.
d. This ensures linearity of calibration. Turn off the AFG (Arbitrary Function

Generator) after calibration.
ii. Measuring Unknown Capacitance (Cx):

a. Connect Cx (unknown capacitor) between points A and D. This places Cx in
parallel with CAD.

b. Connect points A and D to P and Q. Turn on the AFG with the same settings
and record θ2.

c. Calculate the total capacitance and determine Cx from it.
iii. Repeat the Process for Different Standard Capacitors:

a. Bring Cx in parallel with CAE, CAF, and CAG respectively.
b. In each case, connect the combination to points P and Q, record θ2, and

determine Cx.
c. Turn off the AFG after recording data.

iv. Convert Deflections (θ1 and θ2):
a. Use the recorded θ1 and θ2 values to calculate capacitances in pF.
b. Average the values of Cx obtained from different configurations for better

accuracy.

5. Measurement of unknown capacitance in dielectric medium C’x – Here the deflection is
noted as θ3

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

23

Observation

S.No When P
and Q are
connected
to

Calibration of standard
capacitors without
connecting any capacitor
in parallel

Measurement of Cx in
air medium with Cx

parallel to Cstd

Measurement of
C’x in dielectric
medium with C’x

parallel to Cstd

Deflection
θ1

Value of
Cstd= θ1x10

(pF)

Deflecti
on θ2

Value of
Cx= (θ2-θ1)
x10
(pF)

Defle
ction
θ3

Value of
C’x= (θ2-
θ1) x10
(pF)

Average Cx = ---------pF C’x = ---------pF

Calculation:

x

x

C

C
k

1

Result

Dielectric constant of a given liquid k = --------------

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

24

7. Characteristics of Phototransistor

AIM:

 To obtain the V-I characteristics of the given photo transistor.

APPARATUS:

Photo transistor IR 3MM 935NM, R.P.S (O-30V) 2Nos, Resistors 220 ohm, Bread board
and connecting wires

CIRCUIT DIAGRAM:

PROCEDURE:

1. Connect the circuit as per the circuit diagram.

 2. Keep the input light excitation fixed. Then vary the Vce in steps of 1V till the maximum
voltage rating of the transistor is reached and then note down the corresponding values of Ic.

 3. Tabulate the readings. For various values of input excitation record the values of Vce and
Ic and plot the characteristics of the photo transistor.

OBSERVATIONS:

V-I Characteristics:

Vce (V) Ic (mA)

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

25

Result

V-I characteristics of photo transistor is studied for various excitation

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

26

1. A. ADDITION OF TWO 8-BIT AND TWO 16-BIT NUMBERS USING 8085
MICROPROCESSOR

Aim

To perform the addition of two 8-bit numbers and two 16-bit numbers using 8085
microprocessor assembly language programming.

Apparatus Required

8085 Microprocessor Trainer Kit / Emulator Software, Power Supply (5V DC), Hexadecimal
Keypad and Display Interface.

Algorithm

8-bit Addition:

1. Load the first number into the accumulator.
2. Add the second number to the accumulator using the ADD instruction.
3. Store the result.
4. Check the carry and store it separately.

16-bit Addition:

1. Load the lower bytes of both numbers.
2. Perform 8-bit addition for the lower bytes and save the result.
3. Add the higher bytes with carry using ADC.
4. Store the result and the carry.

Flow Chart

8-bit Addition

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

27

16 – bit Addition

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

28

Program

8-bit Addition

Address Mnemonic Operand Comment

2000H LXI H, 2500H Load memory pointer to 2500H

2003H MOV A, M Load first number into Accumulator (A)

2004H INX H Increment memory pointer

2005H MOV B, M Load second number into register B

2006H ADD B Add B to A

2007H STA 2600H Store the result at memory location 2600H

200AH HLT Halt program execution

Example Input Output for 8-bit Addition

Memory Address Data Comment

2500H 45H First number (69 in decimal)

2501H 36H Second number (54 in decimal)

Output Result Comment

2600H 7BH Result of addition (123 in decimal)

16-bit Addition

Address Mnemonic Operand Comment

3000H LXI H, 2500H Load memory pointer to 2500H

3003H MOV A, M Load lower byte of the first number

3004H INX H Increment memory pointer

3005H MOV B, M Load lower byte of the second number

3006H ADD B Add B to A

3007H STA 2600H Store the lower byte of the result

300AH MOV C, A Save carry in C

300BH INX H Increment memory pointer

300CH MOV A, M Load higher byte of the first number

300DH INX H Increment memory pointer

300EH MOV B, M Load higher byte of the second number

300FH ADC B Add B to A with carry

3010H STA 2601H Store the higher byte of the result

3013H HLT Halt program execution

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

29

Example Input Output for 16-bit Addition

Memory Address Data Comment

2500H 34H Lower byte of first number (52)

2501H 12H Higher byte of first number (18)

2502H 56H Lower byte of second number (86)

2503H 03H Higher byte of second number (3)

Output Result Comment

2600H 8AH Lower byte of result (138)

2601H 15H Higher byte of result (21)

1. B. SUBTRACTION OF 8-BIT AND 16-BIT NUMBERS USING 8085
MICROPROCESSOR

Aim

To understand the subtraction operation in the 8085 microprocessor.

To perform the subtraction of two 8-bit numbers.

To perform the subtraction of two 16-bit numbers.

Apparatus Required

8085 Microprocessor Trainer Kit / Emulator Software, Power Supply (5V DC), Hexadecimal
Keypad and Display Interface.

Algorithm for 8-bit Subtraction

1. Start the program.
2. Initialize the memory pointer to the starting address of the input numbers (e.g.,

2500H).
3. Load the first 8-bit number into the accumulator (A) from the memory.
4. Increment the memory pointer to the next location.
5. Load the second 8-bit number into a register (e.g., B).
6. Perform subtraction using the SUB instruction, which subtracts the contents of

register B from A.
7. Store the result in a specified memory location (e.g., 2600H).
8. Stop the program.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

30

Algorithm for 16-bit Subtraction

1. Start the program.
2. Initialize the memory pointer to the starting address of the input numbers (e.g.,

2500H).
3. Load the lower byte of the first number into the accumulator (A) from memory.
4. Increment the memory pointer to the next location.
5. Load the lower byte of the second number into a register (e.g., B).
6. Perform subtraction using the SUB instruction.
7. Store the lower byte of the result at the specified memory location (e.g., 2600H).
8. Save the borrow flag in a register (e.g., C) if a borrow occurs.
9. Increment the memory pointer to load the higher bytes of the first and second

numbers.
10. Perform subtraction of the higher bytes using the SBB instruction (subtract with

borrow).
11. Store the higher byte of the result at the specified memory location (e.g., 2601H).
12. Stop the program.

Flow Chart

8-bit Subtraction

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

31

16-bit Subtraction

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

32

Program

8-bit Subtraction

Address Mnemonic Operand Comment

8000H LXI H, 8000H Load address of the first number into HL pair.

8003H MOV A, M Move the first number into the accumulator.

8004H INX H Increment HL to point to the second number.

8005H SUB M Subtract the second number from accumulator.

8006H MOV M, A Store the result at memory location 8002H.

8007H HLT Halt the program.

Example Input Output for 8-bit Subtraction

Memory Address Content Description

8000H 35H First number (53 in decimal).

8001H 12H Second number (18 in decimal).

Output (8002H) 23H Result (53 - 18 = 35 in decimal).

16-bit Subtraction

Address Mnemonic Operand Comment

8000H LXI H, 8000H Load address of the first 16-bit number into HL.

8003H MOV A, M Load the lower byte of the first number into A.

8004H INX H Increment HL to point to the higher byte.

8005H MOV B, M Load the higher byte of the first number into B.

8006H INX H Increment HL to point to the second number.

8007H MOV C, M Load the lower byte of the second number into C.

8008H INX H Increment HL to point to the higher byte.

8009H MOV D, M Load the higher byte of the second number into D.

800AH MOV A, C Move the lower byte of the second number into A.

800BH SUB M Subtract the lower bytes.

800CH MOV M, A Store the lower byte of the result at 8004H.

800DH INX H Increment HL to point to the higher byte.

800EH SBB B Subtract the higher bytes with borrow.

800FH MOV M, A Store the higher byte of the result at 8005H.

8010H HLT Halt the program.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

33

Example Input Output for 16-bit Subtraction

Memory Address Content Description

8000H 34H Lower byte of the first 16-bit number.

8001H 12H Higher byte of the first 16-bit number.

8002H 12H Lower byte of the second 16-bit number.

8003H 0FH Higher byte of the second 16-bit number.

Output (8004H) 22H Lower byte of the result (802 in decimal).

Output (8005H) 03H Higher byte of the result (802 in decimal).

1. C. MULTIPLICATION OF 8-BIT AND 16-BIT NUMBERS USING 8085
MICROPROCESSOR

Aim

To understand the multiplication operation in the 8085 microprocessor.

To perform the multiplication of two 8-bit numbers.

To perform the multiplication of two 16-bit numbers.

Apparatus Required

8085 Microprocessor Trainer Kit / Emulator Software, Power Supply (5V DC), Hexadecimal
Keypad and Display Interface.

Algorithm

8-bit Multiplication

1. Load the first 8-bit number into the accumulator (A).
2. Load the second 8-bit number into register C (serves as the counter).
3. Clear register B to accumulate the result (set B = 00H).
4. Repeat the following steps until the counter C becomes zero:

o Add the accumulator value (A) to register B.
o Decrement the counter (C).

5. Store the result from B into the memory.
6. Halt the program.

16-bit Multiplication

1. Load the lower byte of the first 16-bit number into register E.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

34

2. Load the higher byte of the first 16-bit number into register D.
3. Load the multiplier (8-bit number) into the counter register C.
4. Clear HL to accumulate the result (set HL = 0000H).
5. Repeat the following steps until the counter C becomes zero:

o Add the 16-bit number (DE) to the accumulator pair (HL).
o Decrement the counter (C).

6. Store the result from HL into memory.
7. Halt the program.

Flow Chart

8-bit Multiplication

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

35

16-bit Multiplication

Program

8-bit Multiplication

Address Mnemonic Operand Comment

8000H LXI H, 8000H Load memory address of the first number.

8003H MOV A, M Load the first number into accumulator.

8004H INX H Increment address to point to the second number.

8005H MOV C, M Load the second number into C.

8006H MVI B, 00H Clear register B to accumulate result.

8008H LOOP: ADD A Add the first number (in A) to B.

8009H MOV B, A Accumulate the result in B.

800AH DCR C Decrement counter C.

800BH JNZ LOOP Repeat until C becomes zero.

800CH STA 8002H Store the result at memory location 8002H.

800DH HLT Halt the program.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

36

Input-Output Table (8-Bit Multiplication)

Memory Address Content Description

8000H 04H First number (4 in decimal).

8001H 03H Second number (3 in decimal).

Output (8002H) 0CH Result (4 × 3 = 12 in decimal).

16-bit Multiplication

Address Mnemonic Operand Comment

8000H LXI H, 8000H Load address of the first 16-bit number.

8003H MOV E, M Load the lower byte of the first number into E.

8004H INX H Increment address to point to the higher byte.

8005H MOV D, M Load the higher byte of the first number into D.

8006H INX H Increment address to point to the multiplier.

8007H MOV C, M Load the multiplier into C.

8008H LXI H, 0000H Clear HL (used to accumulate result).

800BH LOOP: DAD D Add the 16-bit number in DE to HL.

800CH DCR C Decrement counter C.

800DH JNZ LOOP Repeat until C becomes zero.

800EH SHLD 8004H Store the result at memory location 8004H-8005H.

800FH HLT Halt the program.

Input-Output Table (16-Bit Multiplication)

Memory Address Content Description

8000H 12H Lower byte of first 16-bit number (18).

8001H 01H Higher byte of first 16-bit number (1).

8002H 03H Multiplier (3 in decimal).

Output (8004H) 36H Lower byte of result (54 in decimal).

Output (8005H) 00H Higher byte of result (0 in decimal).

Result

Arithmetic operation such as Addition, Subtraction and Multiplication of two 8-bit and 16-bit
numbers are executed successfully using 8085 microprocessors and the outputs are verified.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

37

2. DATA MANIPULATION - A) ARRANGE THE GIVEN DATA
ITEMS IN ASCENDING ORDER

Aim

To arrange the given data into ascending order using 8085 microprocessor

Apparatus Required

8085 Microprocessor Trainer Kit / Emulator Software, Power Supply (5V DC),
Hexadecimal Keypad and Display Interface

Algorithm

1. Initialize Registers:
2. Load the starting address of the array into the HL pair.
3. Load the total number of elements in the array into register C.
4. Outer Loop:

Set a flag to indicate if any swapping occurred during the pass.
5. Inner Loop:

Compare adjacent elements.
Swap them if they are not in the desired order (ascending or descending).
If a swap occurs, set the flag.

6. Repeat Outer Loop:
If a swap occurred during the previous pass, repeat the process.
If no swap occurred, the array is sorted.

7. Store Result:
8. Store the sorted array back in memory.
9. Halt the Program:

End the program using HLT

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

38

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

39

Program

Ascending Order

Address Mnemonic Operand Comment

8000H LXI H, 8002H Load the starting address of the array.

8003H MOV C, M Load the number of elements into register C.

8004H DCR C Decrement C as array size - 1 is needed.

8005H MVI D, 00H Initialize flag D to 0 (no swaps yet).

8006H OUTER: LXI B, 0000H Reset inner loop pointer to array start.

8009H MOV A, M Load the first element into A.

800AH INX H Point to the next element.

800BH CMP M Compare with the next element.

800CH JC NOSWAP Jump if in the correct order for ascending.

800FH MOV E, M Swap: Load the second element into E.

8010H MOV M, A Move the first element to the second location.

8011H DCX H Point to the first element again.

8012H MOV M, E Store the second element in the first location.

8013H MVI D, 01H Set flag D to indicate a swap occurred.

8014H NOSWAP: INX H Move to the next pair of elements.

8015H INX B Increment the loop counter.

8016H DCR C Decrement the counter.

8017H JNZ OUTER If more comparisons needed, repeat outer loop.

8018H MOV A, D Check if any swaps occurred.

8019H CPI 00H If no swaps, array is sorted.

801AH JZ DONE Jump to halt if sorted.

801BH JMP 8006H Otherwise, repeat the outer loop.

801EH DONE: HLT Halt the program.

Example Input and Output Table

Input (Memory)

Memory Address Content Description

8002H 05H Number of elements (5).

8003H 3CH First data element (60).

8004H 29H Second data element (41).

8005H 6AH Third data element (106).

8006H 11H Fourth data element (17).

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

40

Memory Address Content Description

8007H 4FH Fifth data element (79).

Output (Sorted in Ascending Order)

Memory Address Content Description

8003H 11H First data element (17).

8004H 29H Second data element (41).

8005H 3CH Third data element (60).

8006H 4FH Fourth data element (79).

8007H 6AH Fifth data element (106).

2. DATA MANIPULATION - b) FINDING THE MINIMUM
VALUE IN THE GIVEN DATA SET.

Aim

To find the minimum value in the given data set using 8085 microprocessor

Apparatus Required

8085 Microprocessor Trainer Kit / Emulator Software, Power Supply (5V DC),
Hexadecimal Keypad and Display Interface

Algorithm

1. Start the program.
2. Load the starting address of the dataset into the HL register pair.
3. Load the number of elements in the dataset into a counter register (C).
4. Move HL to point to the first data item.
5. Load the first data value into the accumulator (A). This becomes the initial minimum.
6. Increment HL to point to the next data item.
7. Repeat the following steps until the counter (C) becomes zero:
8. Compare the current value in memory (pointed by HL) with the value in the

accumulator (A).
9. If the memory value is smaller, update the accumulator (A) with this new value.
10. Decrement the counter (C).
11. Increment HL to point to the next data item.
12. Store the minimum value from the accumulator (A) into a predefined memory location.
13. End the program.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

41

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

42

Program

Address Mnemonic Operand Comments

2000 LXI H 2050 Load starting address of data into HL pair

2003 MOV C M Load the number of data elements into C

2004 INX H Increment HL to point to first data item

2005 MOV A M Load first data value into accumulator

2006 INX H Increment HL to point to next data item

2007 DCR C Decrement count (C)

2008 JZ 2011 If count is zero, jump to end of loop

200B CMP M Compare A with memory (M)

200C JC 200F If memory (M) is smaller, jump to store

200E INX H Increment HL to point to next data item

200F MOV A M Load memory (M) into A (new minimum)

2010 JMP 2007 Jump back to loop start

2011 STA 3000 Store minimum value at address 3000

2014 HLT Halt the program

Input Table

Memory Location Content Description
2050 04 Number of elements in the dataset

2051 10 First data item

2052 25 Second data item

2053 05 Third data item

2054 15 Fourth data item

Output Table

Memory Location Content Description
3000 05 Minimum value from the dataset

The maximum value in the data set can be found by changing the conditional jump line i.e
one can use JNC instead of JC for comparison line

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

43

2. C. DATA MANIPULATION - SEARCH OF A GIVEN NUMBER IN THE
GIVEN DATA SET

Aim

To Search of a given number in the given data set using 8085 microprocessor

Apparatus Required

8085 Microprocessor Trainer Kit / Emulator Software, Power Supply (5V DC), Hexadecimal
Keypad and Display Interface

Algorithm

1. Start the program.
2. Load the starting address of the dataset into the HL register pair.
3. Load the number of elements in the dataset into the counter register (C).
4. Load the target value (to be searched) into the accumulator (A).
5. Increment HL to point to the first data item.
6. Repeat the following steps until the counter (C) becomes zero:

o Compare the value in the accumulator (A) with the memory value (M) pointed
to by HL.

o If they are equal, store the address of the match and jump to the end.
o Decrement the counter (C).
o Increment HL to point to the next data item.

7. If the counter reaches zero, indicate that the value is not found.
8. End the program

Program

Address Mnemonic Operand Comments

2000 LXI H 2050 Load starting address of the dataset

2003 MOV C M Load the number of data elements into C

2004 INX H Increment HL to point to the target value

2005 MOV A M Load the target value into accumulator

2006 INX H Increment HL to point to first data item

2007 DCR C Decrement counter

2008 JZ 2013 If count is zero, jump to "Not Found"

200B CMP M Compare A with memory (M)

200C JZ 2015 If equal, jump to "Found"

200F INX H Increment HL to point to next data item

2010 JMP 2007 Jump back to loop start

2013 MVI A FF Load FF (Not Found Indicator) into A

2014 JMP 2017 Jump to end of program

2015 MOV A H Store HL high byte (address) in A

2016 STA 3000 Store found address at memory location

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

44

Address Mnemonic Operand Comments

2017 HLT Halt the program

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

45

Input and Output Table

Example 1: Target Value Found

Memory Location Content Description
2050 05 Number of elements in the dataset

2051 15 Target value to search

2052 10 First data item

2053 25 Second data item

2054 15 Third data item

2055 30 Fourth data item

2056 40 Fifth data item

Output

Memory Location Content Description
3000 2054 Address of the target value

Example 2: Target Value Not Found

Memory Location Content Description
2050 04 Number of elements in the dataset

2051 50 Target value to search

2052 10 First data item

2053 20 Second data item

2054 30 Third data item

2055 40 Fourth data item

Output

Memory Location Content Description
3000 FF Indicator that the value was not found

Result

Assembly language programs for data Manipulation such as Arranging the given data
items in Ascending order, Finding the Minimum value in the given data set and Search of a
given number in the given data set are executed successfully using 8085 microprocessor and
ouput are verified.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

46

3. System Call and Rolling Character

Aim

a. To calculate the time delay for a given interval using 8085 microprocessor
instructions.

b. To roll a given character from Left to Right or Right to Left on 7-segment displays
with a specified time interval.

Apparatus Required:

8085 Microprocessor Kit, Power Supply (5V), 7-Segment Display. Connecting Wires
Stopwatch (optional, for time delay verification)

Theory:

1. System Call (Delay Calculation):
The 8085 microprocessor does not have an internal timer. Time delays are generated
using loop instructions. The delay duration depends on the clock frequency of the
microprocessor and the number of cycles consumed by instructions in the loop.

Time delay formula:

)(clockdelay TCnT

Where:

n: Number of iterations in the loop
C: Number of clock cycles per iteration

encyClockFrequ
Tclock

1

Algorithm

a. Time Delay Calculation

1. Load the register with a counter value.
2. Use nested loops for larger delays.
3. Repeat decrementing the counter until it reaches zero.
4. Return to the main program after completing the delay.

Flow chart

a. Time Delay Calculation

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

47

Program Time Delay Calculation

Address Mnemonic Operand Comment

4000H LXI B, 0FFFH Load outer loop counter (0FFFH)

4003H DELAY Label for delay loop

4004H MOV C, A Move Accumulator to C-register

4006H MVI A, FFH Load A-register with FFH (inner loop counter)

4008H INNER Label for inner loop

4009H NOP No operation, 4 T-cycles delay

400AH DCR A Decrement A-register

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

48

Address Mnemonic Operand Comment

400BH JNZ INNER Jump to INNER if A ≠ 0

400CH DCR B Decrement B-register (outer loop counter)

400DH JNZ DELAY Jump to DELAY if B ≠ 0

400EH RET Return from the program

Input and Output: Time Delay Calculation

Input: This program does not take any external input from the user. It works by generating a
time delay based on the internal loop count.

Output: The program will generate a time delay, typically in the millisecond range, which
can be used for other operations that require timing in embedded systems.

b. Rolling Character on 7-segment display

Theory:

Rolling Character:

A character is displayed on 7-segment displays by lighting the appropriate segments. Rolling
means shifting the character from one display to the next (Left-to-Right or Right-to-Left)
after a time interval. This is achieved by refreshing each display in sequence with a delay in
between.

Algorithm:

1. Initialize the data for the character to be displayed.
2. Set up ports for output to 7-segment displays.
3. Load the character data and output it to the first display.
4. Introduce a delay, then shift the character to the next display.
5. Repeat the process for Left-to-Right or Right-to-Left rolling.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

49

Flow chart: b. Rolling Character

Program Rolling Character on 7-Segment Display (8085 Microprocessor)

Address Mnemonic Operand Comment

4000H LXI
H,
4000H

Initialize memory address for 7-segment codes

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

50

Address Mnemonic Operand Comment

4003H MVI A, 77H
Load A-register with the code for character 'A' (7-segment
encoding)

4005H MOV M, A Store the character code in memory

4007H MVI C, 04H Load C-register with number of displays (4)

4009H ROLL Label for rolling loop

400AH MOV A, M Load character code into A-register

400BH OUT 00H Output data to the first 7-segment display

400CH CALL DELAY Call the time delay subroutine

400EH INX H Increment H to point to next 7-segment display

400FH DCR C Decrement display counter

4010H JNZ ROLL Repeat if C ≠ 0

4012H RET Return from the program

Input and Output:

Input: The program takes an ASCII character (e.g., 'A') which corresponds to a specific 7-
segment display code (in this case, 77H for 'A').

Output: The character is displayed on multiple 7-segment displays, rolling either from left to
right or right to left, based on the logic of the program. The character will appear sequentially
on each display with a specified time interval in between.

Result

The experiment demonstrates the use of 8085 microprocessor instructions to calculate time
delays and control 7-segment displays for character rolling.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

51

4. DATA TRANSFER AND EXCHANGE

Aim

1. To transfer N bytes of data from memory location A: XXH to memory location B:
YYH.

2. To exchange N bytes of data between memory locations A: XXH and B: YYH.

Apparatus Required

MCU8051 IDE (Freeware Simulator).

Algorithm

Program 1: Transfer N Bytes of Data

1. Load the source address (XXH) into R0.
2. Load the destination address (YYH) into R1.
3. Load the number of bytes N into a register (e.g., R2).
4. Start a loop:

o Read a byte from the source location (@R0).
o Write the byte to the destination location (@R1).
o Increment both R0 and R1.
o Decrement the counter R2.

5. Repeat the loop until N becomes zero.
6. Halt the program.

Program 1: Transfer N Bytes of Data

Address Instruction Operands Description

0000H MOV R0, #XXH Load source address XXH into register R0.

0002H MOV R1, #YYH Load destination address YYH into register R1.

0004H MOV R2, #N Load byte count N into register R2.

0006H MOV A, @R0 Load data from the source into the accumulator.

0008H MOV @R1, A Move data from the accumulator to the destination.

000AH INC R0 Increment source pointer R0.

000BH INC R1 Increment destination pointer R1.

000CH DJNZ R2, 0006H Decrement N and repeat if not zero.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

52

Address Instruction Operands Description

000EH SJMP 000EH Stop the program (infinite loop).

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

53

Input:

o Source Address XXH: 05H, 06H, 07H.
o Destination Address YYH: Empty.
o Number of Bytes N: 03H.

Output:

o Destination Address YYH: 05H, 06H, 07H.

Exchange N Bytes of Data

Algorithm

1. Load the source address (XXH) into R0.
2. Load the destination address (YYH) into R1.
3. Load the number of bytes N into a register (e.g., R2).
4. Start a loop:

o Read a byte from the source location (@R0) into A.
o Swap it with the byte at the destination location (@R1).
o Store the original byte from A at the destination location (@R1).
o Increment both R0 and R1.
o Decrement the counter R2.

5. Repeat the loop until N becomes zero.
6. Halt the program.

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

54

Exchange N Bytes of Data

 Input and Output

Program 2: Exchange Example

 Input:
o Source Address XXH: 0AH, 0BH, 0CH.
o Destination Address YYH: 01H, 02H, 03H.
o Number of Bytes N: 03H.

 Output:
o Source Address XXH: 01H, 02H, 03H.
o Destination Address YYH: 0AH, 0BH, 0CH.

Result

The programs demonstrate how to perform data transfer and exchange operations in the
internal RAM of the 8051 microcontroller using assembly language. This practical example
shows how loop-based operations and register manipulation can be applied effectively.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

55

5. Data Manipulation

Aim

1. a) Write an assembly language program to find the largest element in a given array of
N =___ H bytes at location 4000H. Store the largest element at location 4062H.

2. b) Write an assembly language program to count number of ones and zeros in an eight
bit number.

Apparatus Required

MCU8051 IDE (Freeware Simulator).

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

56

Algorithm

a. Finding the Largest Element in an Array

Initialize pointers:

1. Load the starting address of the array (4000H) into a pointer register (R0).
2. Load the count of elements N into a register (R1).
3. Initialize the largest value in accumulator A with the first element.

Loop through the array:

4. Compare the current value in the accumulator with the next value in the array.
5. If the next value is larger, update the accumulator with this value.
6. Increment the pointer to move to the next element.
7. Decrement the counter R1 and repeat the loop if the counter is not zero.

Store the largest value:

8. Store the value in the accumulator (A) at 4062H.

Stop the program:

9. Enter an infinite loop (SJMP).

Program : Finding the Largest Element in an Array

Address Instruction Operand Description

0000H MOV R0, #4000H Load starting address of the array into register R0.

0003H MOV R1, #N Load the size of the array into register R1.

0006H MOV A, @R0 Load the first element of the array into accumulator A.

0008H INC R0 Increment the source pointer R0.

0009H DEC R1 Decrement the counter R1.

000AH JZ DONE If R1 = 0, jump to DONE (end of loop).

000DH MOV B, @R0 Load the next element of the array into register B.

000FH CJNE
A, B,
NEXT

Compare accumulator A and B; if A ≠ B, jump to
NEXT.

0012H MOV A, B
Move the value in register B (if larger) to accumulator
A.

0014H NEXT: INC R0 Increment the source pointer R0.

0015H SJMP 0009H
Jump back to check and process the next element in
the loop.

0018H
DONE:
MOV

4062H, A Store the largest value in memory location 4062H.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

57

Address Instruction Operand Description

001BH SJMP 001BH Infinite loop to halt program execution.

Input and Output

Input:

Memory address 4000H: Array elements (e.g., 12H, 34H, 56H, 45H).

N: Number of elements (e.g., 04H for four elements).

Output:

Memory address 4062H: The largest element in the array (e.g., 56H).

Algorithm: Counting Ones and Zeros in an 8-Bit Number

Initialize:

1. Load the number into the accumulator A.
2. Set counters for ones (R0) and zeros (R1) to 0.

Loop 8 times:

3. Rotate the accumulator left (or right) to bring each bit into the carry flag.
4. If the carry flag is set, increment the counter for ones (R0).
5. Otherwise, increment the counter for zeros (R1).

Stop the program:

6. Enter an infinite loop (SJMP).

Program: Counting Ones and Zeros in an 8-Bit Number

Address Instruction Operand Description

0000H MOV A, #data Load the 8-bit number into accumulator A.

0002H MOV R0, #00H Initialize the ones counter in register R0 to 0.

0004H MOV R1, #00H Initialize the zeros counter in register R1 to 0.

0006H MOV R2, #08H Load the number of bits (8) into register R2.

0008H LOOP: RRC A
Rotate the accumulator right; bit enters the carry
flag.

0009H JC INCR_ONES
If the carry flag is set, jump to increment the
ones counter.

000CH INC R1 Increment the zeros counter in register R1.

000DH SJMP NEXT Skip to the next iteration of the loop.

0010H
INCR_ONES:
INC

R0 Increment the ones counter in register R0.

0012H NEXT: DJNZ R2, LOOP Decrement R2 and repeat the loop if not zero.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

58

Address Instruction Operand Description

0015H SJMP 0015H Infinite loop to halt program execution.

Flow Chart

Input and Output

1. Input:

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

59

o Accumulator A: 8-bit binary number (e.g., A = 5AH or 01011010 in binary).
2. Output:

Register R0: Number of ones in the binary number (e.g., 4 for 01011010).

Register R1: Number of zeros in the binary number (e.g., 4 for 01011010).

Result

Data manipulation program such as finding largest number in the given set of numbers and
counting number of ones and zeros in the given number are written and executed successfully
using 8051 microcontroller.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

60

6. Arithmetic Programming

Aim

1. To perform addition of two 16-bit numbers.
2. To perform subtraction of two 16-bit numbers.
3. To perform multiplication of two 8-bit numbers.
4. To calculate the square of a given number.

Apparatus Required:

8051 Microcontroller Trainer Kit or MCU8051 IDE Simulator

Algorithm: a) Addition of Two 16-bit Numbers

1. Load the lower bytes of the first and second numbers into registers.
2. Add the lower bytes and store the result. Save the carry.
3. Load the higher bytes of the first and second numbers.
4. Add the higher bytes along with the carry from the previous addition.
5. Store the result in the specified memory location.

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

61

Program: a) Addition of Two 16-bit Numbers

Address Instruction Operand Description

0000H MOV R0, #XXH Load the lower byte of the first number.

0002H MOV R1, #YYH Load the lower byte of the second number.

0004H ADD A, R0 Add the lower bytes of the numbers.

0005H MOV 30H, A Store the result of the lower byte addition.

0007H MOV R0, #ZZH Load the higher byte of the first number.

0009H MOV R1, #AAH Load the higher byte of the second number.

000BH ADDC A, R0 Add the higher bytes with the carry.

000CH MOV 31H, A Store the result of the higher byte addition.

000EH SJMP $ Infinite loop to stop program execution.

Input and Output: a) Addition of Two 16-bit Numbers

 Input:
o First number: 1234H (Lower byte: 34H, Higher byte: 12H).
o Second number: 5678H (Lower byte: 78H, Higher byte: 56H).

 Output:
o Result: 68ACH stored at 30H (lower byte: 8CH) and 31H (higher byte: 68H).

Algorithm: b) Subtraction of Two 16-bit Numbers

1. Load the lower bytes of the first and second numbers into registers.
2. Subtract the lower bytes and save the borrow.
3. Load the higher bytes of the first and second numbers.
4. Subtract the higher bytes along with the borrow from the previous subtraction.
5. Store the result.

Program: b) Subtraction of Two 16-bit Numbers

Address Instruction Operand Description

0000H MOV R0, #XXH Load the lower byte of the first number.

0002H MOV R1, #YYH Load the lower byte of the second number.

0004H SUBB A, R0 Subtract the lower bytes of the numbers.

0005H MOV 30H, A Store the result of the lower byte subtraction.

0007H MOV R0, #ZZH Load the higher byte of the first number.

0009H MOV R1, #AAH Load the higher byte of the second number.

000BH SUBB A, R0 Subtract the higher bytes with the borrow.

000CH MOV 31H, A Store the result of the higher byte subtraction.

000EH SJMP $ Infinite loop to stop program execution.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

62

Sample Input and Output

 Input:
o First number: 5678H.
o Second number: 1234H.

 Output:

Result: 4444H stored at 30H (lower byte: 44H) and 31H (higher byte: 44H)

Flow Chart : b) Subtraction of Two 16-bit Numbers

Algorithm: c) Multiplication of Two 16-bit Numbers

1. Load the two 8-bit numbers into registers.
2. Perform the multiplication using the MUL AB instruction.
3. Store the lower byte of the result in A and the higher byte in B.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

63

Flow Chart : c) Multiplication of Two 16-bit Numbers

Program: b) Multiplication of Two 16-bit Numbers

Address Instruction Operand Description

0000H MOV A, #XXH Load the first 8-bit number into accumulator A.

0002H MOV B, #YYH Load the second 8-bit number into register B.

0004H MUL AB Multiply the contents of A and B.

0005H MOV 30H, A Store the lower byte of the result in memory.

0007H MOV 31H, B Store the higher byte of the result in memory.

0009H SJMP $ Infinite loop to stop program execution.

Input and Output: 16-bit Multiplication

 Input:
o First number: 12H.
o Second number: 34H.

 Output:
o Result: 03C8H stored at 30H (C8H) and 31H (03H).

Algorithm: d) Square of a Given Number

1. Load the number into the accumulator.
2. Multiply the number by itself using MUL AB.
3. Store the result.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

64

Flow Chart: d) Square of a Given Number

Program: d) Square of a Given Number

Address Instruction Operand Description

0000H MOV A, #XXH Load the number into accumulator A.

0002H MOV B, A Copy the number to register B.

0004H MUL AB Multiply the contents of A and B.

0005H MOV 30H, A Store the lower byte of the result in memory.

0007H MOV 31H, B Store the higher byte of the result in memory.

0009H SJMP $ Infinite loop to stop program execution.

 Input and Output: d) Square of a Given Number

 Input:
o Number: 06H.

 Output:

Square: 0036H stored at 30H (36H) and 31H (00H)

Result

The assembly language programs for addition, subtraction, multiplication, and squaring of
numbers were executed successfully on the 8051 Microcontroller

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

65

7. Code Conversion Using 8051 Microcontroller

Aim

a. To convert a Binary Coded Decimal (BCD) number into ASCII.
b. To convert an ASCII number into Decimal.
c. To convert a Decimal number into ASCII.
d. To convert a binary (hex) number into Decimal.
e. To convert a BCD number to 7-Segment code.

Apparatus Required:

1. 8051 Microcontroller Trainer Kit or MCU8051 IDE Simulator.
2. PC with assembler and IDE for simulation.
3. Power supply and connecting cables.

Algorithm : (a) Program to Convert a BCD Number to ASCII

1. Load the BCD number into accumulator A.
2. Separate the higher nibble (most significant digit) by masking the lower nibble using

AND operation.
3. Convert the higher nibble to ASCII by adding 30H.
4. Store the higher ASCII character in memory.
5. Separate the lower nibble using masking and shift it into the higher nibble position.
6. Convert the lower nibble to ASCII by adding 30H.
7. Store the lower ASCII character in memory.

Flow Chart

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

66

Program : (a) Program to Convert a BCD Number to ASCII

Address Instruction Operand Description

0000H MOV
A,
#BCD_NUM

Load the BCD number into accumulator A.

0002H ANL A, #0F0H Mask the lower nibble to isolate the higher nibble.

0004H SWAP A
Swap nibbles to place the higher nibble in the lower
nibble position.

0005H ADD A, #30H Convert the higher nibble to ASCII.

0007H MOV 30H, A Store the higher ASCII character.

0009H MOV
A,
#BCD_NUM

Reload the BCD number.

000BH ANL A, #0FH Mask the higher nibble to isolate the lower nibble.

000DH ADD A, #30H Convert the lower nibble to ASCII.

000FH MOV 31H, A Store the lower ASCII character.

0011H SJMP $ Infinite loop to stop program execution.

Input and Output: a) Program to Convert a BCD Number to ASCII

 Input:
o BCD Number: 45H

 Output:
o ASCII Representation: 34H (for 4) and 35H (for 5), stored at 30H and 31H.

Algorithm: b) Program to Convert an ASCII Number to Decimal

1. Load the ASCII number into accumulator A.
2. Subtract 30H from the ASCII number to convert it to decimal.
3. Store the result in memory.

Flow Chart: b) Program to Convert an ASCII Number to Decimal

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

67

 b) Program to Convert an ASCII Number to Decimal

Address Instruction Operand Description

0000H MOV A, #ASCII_NUM Load the ASCII number into accumulator A.

0002H SUBB A, #30H Subtract 30H from the ASCII number.

0004H MOV 30H, A Store the decimal equivalent in memory.

0006H SJMP $ Infinite loop to stop program execution.

Input and Output: b) Conversion of ASCII Number to Decimal

 Input:
o ASCII Number: 35H

 Output:
o Decimal Equivalent: 05H, stored at 30H.

Algorithm: c) Conversion of a Decimal number into ASCII

1. Load the decimal number into accumulator A.
2. Add 30H to the decimal number to convert it to ASCII.
3. Store the result in memory.

Flow Chart: c) Conversion of a Decimal number into ASCII

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

68

c) Program to Convert Decimal Number to ASCII

Address Instruction Operand Description

0000H MOV A, #DEC_NUM Load the decimal number into accumulator A.

0002H ADD A, #30H Add 30H to the decimal number.

0004H MOV 30H, A Store the ASCII equivalent in memory.

0006H SJMP $ Infinite loop to stop program execution.

Input and Output: Convert Decimal Number to ASCII

Input:

Decimal Number: 05H

Output:

ASCII Representation: 35H, stored at 30H.

Algorithm: Conversion of Binary (Hex) number to Decimal

1. Load the binary (hexadecimal) number into accumulator A.
2. Divide the number by 10 to isolate the tens digit using the DIV AB instruction.
3. Store the quotient as the tens digit in memory.
4. Multiply the quotient by 10 and subtract from the original number to get the units

digit.
5. Store the units digit in memory.
6. Convert both digits (tens and units) to ASCII by adding 30H.
7. Store the ASCII values in memory.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

69

Flow Chart: Conversion of Binary (Hex) number to Decimal

Program: Conversion of Binary (Hex) number to Decimal

Address Instruction Operand Description

0000H MOV A, #HEX_NUM Load the binary (hex) number into accumulator A.

0002H MOV B, #0AH Load the value 10 into register B for division.

0004H DIV AB Divide A by B. The quotient is in A, remainder in B.

0005H MOV 30H, A Store the quotient (tens digit) in memory.

0007H MOV 31H, B Store the remainder (units digit) in memory.

0009H MOV A, 30H Load the tens digit.

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

70

Address Instruction Operand Description

000BH ADD A, #30H Convert the tens digit to ASCII.

000DH MOV 32H, A Store the ASCII value of the tens digit.

000FH MOV A, 31H Load the units digit.

0011H ADD A, #30H Convert the units digit to ASCII.

0013H MOV 33H, A Store the ASCII value of the units digit.

0015H SJMP $ Infinite loop to stop program execution.

Input and Output: Conversion of Binary (Hex) number to Decimal

 Input:
o Hex Number: 1CH (28 in decimal).

 Output:
o Decimal Representation: 2 and 8.
o ASCII Representation: 32H (for 2) and 38H (for 8), stored at 32H and 33H.

Algorithm: e) Convert BCD to 7-Segment Code

1. Load the BCD number into accumulator A.
2. Use a lookup table in memory to find the corresponding 7-segment code.
3. Store the 7-segment code in memory.

Flow Chart: e) Convert BCD to 7-Segment Code

Manonmaniam Sundaranar University, Directorate of Distance & Continuing Education,Tirunelveli

71

Program: e) Convert BCD to 7-Segment Code

Address Instruction Operand Description

0000H MOV
A,
#BCD_NUM

Load the BCD number into accumulator A.

0002H MOVC A, @A+DPTR
Use the lookup table to get the corresponding 7-
segment code.

0004H MOV 30H, A Store the 7-segment code in memory.

0006H SJMP $ Infinite loop to stop program execution.

Input and Output

 Input:
o BCD Number: 02H.

 Output:
o 7-Segment Code: 5BH (corresponding to digit 2), stored at 30H.

 7-Segment Code Lookup Table

Digit 7-Segment Code (Hex)

0 3FH

1 06H

2 5BH

3 4FH

4 66H

5 6DH

6 7DH

7 07H

8 7FH

9 6FH

Result:

The assembly language programs for Binary (Hex) to Decimal conversion and BCD
to 7-Segment code conversion were executed successfully on the 8051 Microcontroller

